PAX2 activates WNT4 expression during mammalian kidney development.

نویسندگان

  • Elena Torban
  • Alison Dziarmaga
  • Diana Iglesias
  • Lee Lee Chu
  • Tatiana Vassilieva
  • Melissa Little
  • Michael Eccles
  • Maria Discenza
  • Jerry Pelletier
  • Paul Goodyer
چکیده

The transcription factor PAX2 is expressed during normal kidney development and is thought to influence outgrowth and branching of the ureteric bud. Mice with homozygous null Pax2 mutations have developmental defects of the midbrain-hindbrain region, optic nerve, and ear and are anephric. During nephrogenesis, PAX2 is also expressed by mesenchymal cells as they cluster and reorganize to form proximal elements of each nephron, but the function of PAX2 in these cells is unknown. In this study we hypothesized that PAX2 activates expression of WNT4, a secreted glycoprotein known to be critical for successful nephrogenesis. PAX2 protein was identified in distal portions of the "S-shaped" body, and the protein persists in the emerging proximal tubules of murine fetal kidney. PAX2 activated WNT4 promoter activity 5-fold in co-transfection assays with JTC12 cells derived from the proximal tubule. Inspection of the 5'-flanking sequence of the human WNT4 gene identified three novel PAX2 recognition motifs; each exhibited specific PAX2 protein binding in electromobility shift assays. Two motifs were contained within a completely duplicated 0.66-kb cassette. Transfection of JTC12 cells with a PAX2 expression vector was associated with a 7-fold increase in endogenous WNT4 mRNA. In contrast, Wnt4 mRNA was decreased by 60% in mesenchymal cell condensates of fetal kidney from mice with a heterozygous Pax2 mutation. We speculated that a key function of PAX2 is to activate WNT4 gene expression in metanephric mesenchymal cells as they differentiate to form elements of the renal tubules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notch2 activation in the embryonic kidney depletes nephron progenitors.

Successive activation of Wnt4 and Notch2 generates nephrons from the metanephric mesenchyme. Mesenchymal-to-epithelial transition requires Wnt4, and normal development of the proximal nephron (epithelia of glomeruli and proximal tubules) requires Notch2. It is unknown, however, whether Notch2 dictates the fate of the proximal nephron directly. Here, we generated a mutant strain of mice with act...

متن کامل

Preferential Propagation of Competent SIX2+ Nephronic Progenitors by LIF/ROCKi Treatment of the Metanephric Mesenchyme

Understanding the mechanisms responsible for nephrogenic stem cell preservation and commitment is fundamental to harnessing the potential of the metanephric mesenchyme (MM) for nephron regeneration. Accordingly, we established a culture model that preferentially expands the MM SIX2+ progenitor pool using leukemia inhibitory factor (LIF), a Rho kinase inhibitor (ROCKi), and extracellular matrix....

متن کامل

Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies

Nephron progenitor number determines nephron endowment; a reduced nephron count is linked to the onset of kidney disease. Several transcriptional regulators including Six2, Wt1, Osr1, Sall1, Eya1, Pax2, and Hox11 paralogues are required for specification and/or maintenance of nephron progenitors. However, little is known about the regulatory intersection of these players. Here, we have mapped n...

متن کامل

Regulation of c-Ret in the developing kidney is responsive to Pax2 gene dosage.

During kidney development, Pax2 and Pax8 are expressed very early in the mammalian nephric duct and both precede the expression of receptor tyrosine kinase, c-Ret. However, in Pax2-/- mutant mice, expression of c-Ret is lost after embryonic day 10.5. As the Ret/Gdnf pathway is necessary for renal development and there is a temporal and spatial relationship of Pax2 and c-Ret expression in the de...

متن کامل

PAX2 is reactivated in urinary tract obstruction and partially protects collecting duct cells from programmed cell death.

Obstruction of the urinary tract activates apoptotic pathways in collecting duct cells and leads to loss of renal parenchyma before surgical intervention. It has been suggested that developmental pathways may be reactivated to offset acute organ damage. One such molecule, PAX2, is expressed throughout the fetal collecting duct and was recently shown to suppress apoptosis during kidney developme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 18  شماره 

صفحات  -

تاریخ انتشار 2006